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Abstract: Nowadays, cryopreservation of gametes and embryos is a fundamental, integral,
and indispensable part of infertility treatment or fertility preservation. Cryopreservation is not only
needed for the policy of single embryo transfer and cryopreservation of surplus embryos, but for
deferring embryo transfer in the case of ovarian hyperstimulation syndrome, uterine pathologies,
and suboptimal endometrium built-up or when preimplantation genetic testing is needed. Several
current strategies in assisted reproduction technology (ART) would be inconceivable without highly
efficient cryopreservation protocols. Nevertheless, cryopreservation hampered for a long time,
especially in terms of low survival rates after freezing and thawing. Only the technical progress
during the last decades, namely, in regard to the implementation and advancement of vitrification,
leveraged its application, and thus, even allows the cryopreservation of human oocytes—a process
that is far from being easy. This review aims to provide a deeper insight into the physical processes of
cryopreservation and to explore the character of the vitrified state in the extra and intracellular milieu
in order to demonstrate that the common denominator to all cryopreservation procedures is the
establishment of an intracellular amorphous condition that hinders the likelihood of crystallization.
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1. Cryopreservation: A Field of Emerging Interest

Cryobiology is the science that studies the cellular behavior of biological material (e.g., gametes,
embryos, tissues, organs) at low temperatures. From the very beginning, the challenge in the
development of cryopreservation techniques was to cool down the biological material from room
temperature to −196 ◦C, while ensuring the cellular function and integrity of cell organelles and
membranes after warming to develop subsequent in vitro or in vivo.
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1.1. In the Animal Field

Since the development of fundamental studies on cryopreservation of embryos, and the first birth
of a mouse after freezing almost 50 years ago [1], this discipline has risen attention in a first instance in
the area of embryo transplantation in domestic livestock species [2,3].

In the field of bovine embryo transplantation, the application of cryopreserved semen or embryos
enabled semen and embryo transport to be more practical and cost-effective; remarkably, 30 years of
international trade with frozen embryos has not resulted in the transmission of a single infectious
disease agent [4].

In laboratory animal species, cryopreservation of embryos is an important strategy for conserving
species and valuable strains of laboratory species [5].

The practice of genetic engineering has increased the number of mouse and rat lines to tenfold the
actual number of lines, and thus, the maintenance costs of these animals have increased enormously.
Most of these lines are generated for a particular purpose and may become unnecessary when the
research evolves. These lines may still be useful in other jobs, but to maintain them involves a
significant cost that can slow the progression of other research. The best solution to this problem is
to cryopreserve these lines, thus avoiding keeping them as “metabolizing” animals by storing their
embryos at −196 ◦C in liquid nitrogen (LN2) [6].

1.2. In the Human Field

The development of various cryopreservation methods for application in many cell therapies for
transplantation [7,8] and for assisted reproduction technology (ART) [9,10] is constantly progressing.

Meanwhile, cryopreservation of human oocytes and embryos has taken a prominent place in the
fertility treatment. Modern IVF would be unthinkable without the current techniques. Cryopreservation
of gametes and embryos has increasingly come into the focus for a multitude of indications. Freezing
of surplus embryos became necessary with the implementation of hormonal stimulation resulting in
the harvest of several oocytes per cycle. Cryopreservation of gametes, was originally implemented to
maintain the chances to conceive in the case of oncological therapies (fertility preservation), and then
extended to indications, such as Turner syndrome, autoimmune diseases, endometriosis, or preservation
for societal reasons (Table 1).

Table 1. Indication for cryopreservation of embryos and gametes in ART.

Zygote or Embryo Cryopreservation:

• Surplus zygotes/embryos after IVF
• Prevention of the risk for the ovarian hyper-stimulation syndrome (OHSS)
• Prevention of transfer of embryos into the sub-optimal endometrial environment, due to hormonal

stimulation or uterine pathologies (e.g., uterine polyps or myoma)
• Preimplantation genetic testing (PGT)

Indications for Oocyte Cryopreservation:

• Fertility preservation

(a) Oncological conditions with chemo- or radiotherapy planned (especially in the case of alkylating
chemotherapeutic agents or high-dose radiation of the pelvis)

(b) Premature ovarian failure (POF) with or without genetic predisposition or disorders associated
with diminished fertility (e.g., Turner-Syndrome)

(c) Surgery planned involving the ovaries (e.g., due to endometriosis)
(d) Systemic diseases and subsequent therapies involving a decrease in oocyte quantity and quality

(e.g., rheumatic and autoimmune diseases, or chronic inflammation)
(e) Delay of childbearing

• No sperm available on the day of pick-up
• Ethical or legal restrictions for embryo freezing
• Oocyte donation cycles
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2. Evolution of the Cryopreservation Techniques in ART

2.1. Cryopreservation in the 1980s–1990s: Applied for a Limited Number of Indications, Why?

The first birth of a baby after the transfer of a cryopreserved embryo was obtained with the
standard slow freezing technique [11]. Soon, this technique was widely and very successfully applied
for cleavage stage embryos, but also for fertilized oocytes (zygotes) worldwide.

However, the use of the slow freezing technique (SLF) for unfertilized oocytes showed extremely
limited outcomes during the following 15 years, and its application was limited to scarce and urgent
medical indications (e.g., fertility preservation for young women diagnosed with cancer). In addition,
oocyte cryopreservation was the only alternative in the case of absence or delayed semen production.
For other indications, such as oocyte banking or family planning, it was not considered reasonable to
propose cryopreservation of oocytes. Patients had to be informed about the experimental character
of oocyte cryopreservation and that one could not guarantee the success of the procedure for the
long-term future. Further slow freezing of embryos at the blastocyst stage showed poor outcomes.
Observation of low survival rates post-warming, was the main reason for the lack of enthusiasm to
implement cryopreservation techniques in ART more widely.

2.2. Slow Freezing and the Undesirable Events Associated with Ice Crystal Formation

The slow freezing protocol includes a pre-equilibration step of oocytes or embryos in low
concentrations of permeable cryoprotective agents (CPA ~10% v/v) before the cooling step. Embryos
were cooled down step-wise (max. 0.5 ◦C/min) in a programmable system, after artificial extracellular
ice seeding is induced. During cooling, for each formation of an extracellular ice crystal, the cell will
re-establish osmotic equilibrium by dehydration. Thereby, during cooling, cells continue to dehydrate
intracellularly, reducing the risk for intracellular ice crystal formation until the straws are plunged
into LN2.

The real challenge is to control the two damaging factors that can occur during the freezing
procedure: (i) The intracellular formation and growth of ice crystals during the cooling and warming
steps by recrystallization, due to inappropriate cooling rates or insufficient membrane permeability to
allow re-equilibration by water efflux and; (ii) the formation of an excessive intra- and extracellular
hypertonic environment by uncontrolled extracellular crystallization, that will induce a rise in the
solute concentration, causing irreversible damage by a mechanism called the “solution effect” [12–15].

It emerges from the preceding studies that the common denominator that negatively affects
post-thaw survival is uncontrolled ice crystal formation inside and outside the cell. This is the crucial
factor directly affecting the success of the slow freezing technique. In fact, the cellular damage that
cell encounters during the slow freezing procedure has often been attributed to the formation of
intracellular ice, due to inappropriate dehydration and to uncontrolled extracellular crystallization.

2.3. One Century Ago: The Rise of the Vitrification Concept

In the mid-1990s, the development of more robust freezing techniques was a priority, since for
many cancer therapies, the survival rates have risen tremendously, and the number of potential
indications for cryopreservation was steadily increasing too. This faced the dilemma of growing
demand, which could not be met, due to the lack of an effective cryopreservation technique.

In the search for alternative methods, one turned back to the basis of cryobiology published in the
studies of Luyet [16]. Almost 80 years ago, Luyet highlighted that the intracellular control of the foci of
nucleation and ice crystal formation is a crucial event that determines the viability of all cell types
that go through cryopreservation. He stressed that the change in the state of aggregation from liquid
water into ice crystals in the intracellular compartment must be considered principally as the first
cause of cell death. To counteract the crystallization process, Luyet introduced an alternative concept
called vitrification [16,17]. The general principle of vitrification is to convert a liquid into a glass-like
amorphous solid that is free of any crystalline structures.
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But only from the early 1980s onwards did cryobiologists develop efficient vitrification protocols
for embryo cryopreservation [18]. Many publications related to the understanding and development
of the vitrification of murine embryos [19,20], and cattle [21] have emerged and demonstrated the
advantage of this technique. However, it was not until the mid-1990s that the interest in vitrification
with increasing success in outcome arose in the context of ART [22].

2.4. At Which Temperature Do We Obtain a Glass-Like Amorphous Solid State?

2.4.1. Temperature and the Change of States of Pure Water during a Cooling Process

In order to establish a vitrification protocol, it is essential to understand the following issues:
(i) At which temperature (T◦) do we obtain a vitrified state, (ii) at which temperature range does
crystallization occur, (iii) under which (additional) conditions do we reach a vitrified state, (iv) the
change of physical and chemical states during temperature changes according to the type of solutions
or environment.

Water molecules are the major component of cells. Luyet has already postulated that an excess of
free water is incompatible with survival after cryopreservation, due to ice crystal formation disrupting
the cellular organelles and structures [17]. In viable cells, water is the solvent for intracellular molecules,
such as salts, acids, or bases, essential for cell function [23]. In cryopreservation, water is also the
solvent for permeable and non-permeable CPA. Water has to be considered as the major player to be
mastered during the cryopreservation process [24].

How can cells survive the cryopreservation process despite their high water content? Depending
on the T◦ (and atmospheric pressure), water exists in three physical states: Solid, liquid, and gaseous.
Generally, when the temperature drops (winter conditions, storage in the freezer), the solidification of
water is thought to be associated with the formation of ice crystals. However, for the cryobiologist,
water can solidify in two distinct forms. From the liquid state, water can either solidify as a liquid
crystal of pure water or, under extremely rapid cooling conditions above 100,000 ◦C/min, a spray of
water converts as a solid without crystal formation [25–27]. It is then solidification of pure water,
which is described as an amorphous or glassy state [28,29].

(A) The crystalline solid form of water

The formation of the crystalline solid form of water is shown on the left part of Figure 1.
The changes in the physical states of pure water in correlation to the decreasing temperature (T◦) are
presented. When the temperature falls below 0 ◦C, aqueous fluids do not freeze immediately but first
“supercool”. The crystallization initiation temperature lies in a range between the equilibrium melting
temperature (Tm) and the homogeneous nucleation temperature (Th). This zone is characterized by the
phenomenon of supercooling and heterogeneous nucleation. Heterogeneous nucleation occurs when
particles in water are present, promoting the formation of ice crystals. In the state of supercooling
between Tm and Th, there is a competition between the formation of crystallization nuclei and the
disappearance of these same nuclei in the liquid. The water molecules remain extremely mobile and
free to reorient themselves almost independently of each other. Hydrogen bridges between water
molecules are formed and break, due to the continuous movement of the molecules. As long as the
crystal formation has not reached a critical mass, the tendency to dislocate prevails, explaining why
water can remain supercooled down to temperatures as low as −40 ◦C [30].

As the temperature drops, the state of supercooling cannot indefinitely continue. The movement of
water molecules slows down, and the critical mass of the crystal nucleus formation is finally sufficient
to induce solidification as Th approaches [31,32]. Once nucleation seeds are formed, the structure
becomes rigid, and nucleation seeds can aggregate into larger crystals. When Th is reached, the system
ends up crystallizing uniformly even in the absence of any crystallization seeds and transforms into a
stable state as a crystalline solid [33].
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Figure 1. States of pure water during cooling/warming. On the left side of this one-dimensional phase
diagram, the changes in the physical states of pure water in correlation to the decreasing temperature
(T◦) are presented. Below Tm (melting temperature), heterogeneous nucleation can occur. Only after
reaching a temperature below Th (homogeneous nucleation temperature) ice crystal formation without
the presence of crystallization nuclei occurs. Solidification of pure water in a glassy solid form
(vitrification) is achieved when the T◦ decreases extremely rapidly (cooling speed; C) below the glass
transition temperature (Tg).

(B) The glassy solid-state of water

Solidification of pure water in a glassy solid form (vitrification) is achieved when the temperature
decreases extremely rapidly below the glass transition temperature (Tg; Figure 1). Is was found that
Tg for pure water is −137 ◦C [34] and only possible with cooling (C) rates exceeding 100,000 ◦C/min to
avoid spontaneous crystal nucleation when crossing the zone between Tm and Tg [22–24].

Below Tg, the movement of water molecules is too slow to organize the start of crystallization,
and the solution solidifies with water molecules arranged in a completely disordered state. In other
words, under these experimental conditions of very rapid cooling rates, water has the ability to remain
in a supercooled state. Thereby, low temperatures in association with an extreme increase in viscosity
are important. These two factors induce that water molecules are no longer be able to organize
themselves into a crystalline structure, and an amorphous or vitreous solid-state is achieved. Almost
intact intermolecular bonds are typical of the liquid state that characterizes the amorphous or vitreous
solid-state [28,29].

Figure 1 shows that lethal ice crystal formation occurs during the transit through Tm and Tg.
In the case of pure water, the probability of reaching the glassy state during the lowering the T◦ is
dependent on the speed of cooling (C) and the volume (Vol) of the liquid. This can be expressed by the
simple equation:

Probability of obtaining a vitrified state in pure water =
C

Vol
(1)

At slow cooling rates, the formation of crystals is directly observed (pure water becomes a milky
color); in contrast, at extremely high cooling rates (which are not applicable in our IVF laboratories),
a glassy solid-state is observed when pure water reaches Tg (with transparent appearance).
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2.4.2. Shifting of the Glass Transition Temperature (Tg) in Cryoprotectant Solutions

During the development of the different cryopreservation techniques, it was soon recognized
that biological material cannot survive at very low temperatures without the usage of water-soluble
CPA. Due to their polarity, CPA have a great capacity to form hydrogen bonds with water molecules,
due to their hydroxyl residues (glycerol, ethylene glycol, 1-2 propanediol, propylene glycol) or
sulfoxide groups (e.g., DMSO). Membrane diffusible CPA are not only highly soluble in the aqueous
environment, but also intracellularly and can enter into the cell mainly through specific aquaporin
channels. During incubation of cells with solutions containing CPA, a part of the intracellular free
water will be replaced by a CPA solution. CPAs increase the viscosity and thereby lead to a slowdown
of the molecular movements of the water [35]. An increase in viscosity results in (i) a delay of the
nucleation phenomenon, (ii) a reduction of the growth rate of ice crystals, (iii) a limitation of the size of
the crystals between Tm and Tg, and (iv) an impairment of crystal formation in the case of the huge
increase in viscosity during drop in the T◦.

It has to be considered that Tm, Th, Tg for pure water are defined and constant (Figure 1). However,
aqueous solutions (e.g., culture media containing salts, amino acids, and proteins, or cryopreservation
solutions containing salts, amino acids, proteins, and CPA) show different Tm, Th, and Tg. The shift in
these parameters depends on the respective concentration and composition of solved molecules and
CPA [23]. For each change in the concentration of salt or cryoprotectant Tm, Th and Tg have a specific
value. The shift of Tm, and consequently, Th and Tg can be visualized on a phase diagram divided
into three zones corresponding to the different phases: (i) Liquid, (ii) crystalline solid, and (iii) glassy
or amorphous solid (Figure 2) [36].
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Figure 2. Phase diagram of different solutions during cooling/warming. In solutions, the content of
salts, proteins, and other macromolecules, as well as cryoprotective agents (CPA), lead to an increase in
viscosity. As a consequence, the melting temperature I decreases, and the glass transition temperature
(Tg) increases. Thereby, the temperature range where ice crystal formation occurs becomes substantially
smaller, and the probability of obtaining a glassy state increases.

Above Tg, the solutions are either supercooled or in a state of a crystalline solid. Below Tg,
a supercooled solution can go directly transform from a liquid state into a state called a glassy
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solid, or amorphous ice. It should be mentioned, however, that crystalline solid water formed at a
temperature above Tg will remain crystalline when cooling down below Tg. Therefore, to achieve a
glassy solid-state Tm to Tg has to be passed without crystal formation.

2.5. The General Principle of the Vitrification Technique

2.5.1. The Concentration of CPA (Viscosity), Cooling/Warming Rates and Volume: Three Parameters to
Control Achieving a Vitrified State

The fundamental issue in all vitrification methods is to achieve and maintain conditions inside
and outside of the cells that guarantee an amorphous state throughout the cooling, as well as during
the warming process. This is reached when solutes are sufficiently concentrated, or when cooling
is of sufficient speed, that the increased viscosity inhibits nucleation and prevents the growth of ice
crystals. From the binary phase diagram, we can intuitively deduct that when the concentration of
CPA increases, Tg rises (Tg = −135 ◦C for pure water, < −135 ◦C for CPA solutions), and the amplitude
of transit between Tm and Tg is shortened. The faster this temperature range is passed; the lower is the
probability for ice crystal formation. As a consequence, the key to success to achieve a “glass-like” state
in the extra- and intracellular compartment is to determine the optimal balance between the following
three factors: (i) The speed of cooling and warming (generally C/W; 2000 ◦C/min to 20,000 ◦C/min;
in some systems even 1000 ◦C/min–100,000 ◦C/min), (ii) the optimal solute viscosity, and (iii) the
volume of the drop of the vitrification solution [35,37–39]. Whereas, in pure water, C determines the
solidification in a glassy state, and in solutions, the content of solved molecules and CPA have to
be considered.

This is highlighted by the equation of Yavin and Arav [40] for the probability of obtaining a
vitrified state:

Probability of obtaining a vitrified state in solutions =
C/W × Conc.CPA

Vol
(2)

The faster the cooling rate, the lower the concentration of CPA in the solution is required to
achieve vitrification.

2.5.2. How to Prepare Oocytes and Embryos before Plunging Them into LN2?

Before cooling of oocytes or embryos down to −196 ◦C in LN2, the intracellular compartment has
to be prepared to allow the achievement and maintenance of an intracellular vitreous state [38]. To reach
this objective, in nearly all vitrification protocols, the biological material is exposed in a minimum
of two steps to gradually increasing concentrations of non-vitrifying solution (nVS) and vitrifying
solution (VS). Thereby, intra- and extracellular viscosities are increased to an extent, which ensures that
the liquid water molecules will solidify at a sufficient speed, so that a rearrangement into a crystalline
structure is extremely unlikely [41,42].

Practically, the nVS contains a mixture of cell-penetrating CPA, e.g., dimethyl sulfoxide
(DMSO), ethylene glycol, 1,2-propanediol (PROH), or glycerol in concentrations ranging between
2.3–3.2 M [42,43]. The duration of exposure to the nVS at a defined temperature is of utmost importance
and determines the concentration of intracellular CPA. The exposure time is determined by several
biophysical factors, such as the membrane properties (cellular permeability to water and CPA), the type,
mixture, and concentration of CPA, the surface/volume ratio of the cells, and the speed of cooling
and warming. For example, in Figure 3, the biological material is exposed to the nVS until full
equilibrium (recovery of the initial volume), meaning entrance of plenty of CPA molecules associated
with water molecules.
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Figure 3. The biphasic reaction of a cell in the presence of non-vitrifying CPA solution (non-vitrifying
solution (nVS); penetrating and non-penetrating CPA) and vitrifying CPA solution (vitrifying solution
(VS); penetrating and non-penetrating CPA). Changes in cell volume and molecular changes are shown
(blue dots represent free water molecules, green and red dots cellular macromolecules, yellow dots
CPA). During incubation of oocytes or embryos with nVS, the cells dehydrate in a first step as water
flows out through the aquaporin channels (1). After reaching an osmotic equilibrium (A), the entrance
of CPA, and to a lesser extent, of H2O follows (2). This is characterized by a small increase in volume
(B). In the VS, strong dehydration occurs (3), leading to a concentration of CPA within the cell (4) and a
strong decrease in cell volume (C).

In the final step, just before being plunged in LN2, embryos or oocytes are exposed for a short
period (45–90 s) to a VS, containing very high concentrations of a mixture of penetrating CPA (4.8–6.4 M),
non-penetrating CPA (e.g., sucrose or trehalose 0.5–0.75 M or high molecular weights compounds,
such as Ficoll). This last solution is highly concentrated with an osmolarity between 5500–6500 mOsm/L.
The physical aspect of this solution is that it stays transparent during cooling and warming, expressing
the maintenance of a glassy vitrified state (Figure 3).

2.6. Exploration of the Intracellular Compartment

2.6.1. Mode of Action of the High Concentrated VS

As all CPA are potentially toxic, the VS was developed with the minimal concentration of
penetrating CPA that permit to obtain and maintain a vitrified state. When exposing the oocytes
or embryos to the VS, the extracellular compartment is encapsulated by the VS in the form of a
vitrifying sheath. This sheath avoids extracellular ice crystal formation as this could lead to cell injury
not only, due to crystallization, but also because of the “solution effect”, a freeze-concentration of
damaging solutes.

Due to the high osmolarity of the VS containing also non-penetrating CPAs, such as sucrose or
trehalose, a fast shrinkage of the cytoplasm is observed following dehydration (Figure 3). The soluble
components of the cytoplasm (amino acids, proteins, polymers, nucleotides, and other macromolecules)
and the CPA that have previously penetrated into the cell during exposure to the nVS concentrate.
This generates an intracellular environment favorable to the formation of a vitreous state before the
cells are rapidly plunged into LN2.
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The probability of extracellular vitrification is in relation to the concentration of CPA and is
represented by the following equation:

USV Symbol Macro(s) Description
01A0 Ơ \Ohorn
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Vit Extra cell =
C
W × EC Conc CPA

Vol
EC (extracellular) (3)

2.6.2. The Intracellular Concentration of Cryoprotectant Is Far below the Number of CPA in the
Vitrifying Solution

One of the main concerns in vitrification was, and still is, the high concentrations of CPA in the
VS This concern was the basis of several debates as it exceeds three- to four-fold the concentration
of CPA in the former applied slow freezing technique (CPA solutions [CPsol] of 1.5 M). However,
the vitrification protocol follows a different concept, including, e.g., dramatically shorter incubation
times in the nVS and VS, limiting the time for CPA entrance. The hypothesis of high intracellular
concentrations of CPA (ICCP) in vitrified cells was demystified in a recent study using cinematographic
analysis. It was demonstrated that the ICCP is approximately 2.14 M and thereby far below the CPA
concentration of the VS solution (6.4 M) [44].

The finding of 2-fold differences between the concentration of CPA in the VS and the ICCP
raises an important question. An aqueous solution containing 2.14 M penetrating CPA will directly
crystallize. According to Luyet, the presence of ice crystals in the intracellular compartment is the
principal cause of cell death [16,45]. Therefore, how can it be explained that oocytes and embryos
survive the vitrification process even though that the ICCP is far below this threshold? Is the ICCP of
2.14 M sufficient to inhibit the process of nucleation and crystallization without interfering with the
integrity of the cells?

2.6.3. Two Physical Arguments to Explain the Absence of Intracellular Crystallization

Two hypotheses may support the absence of intracellular crystallization in the presence of a
reduced concentration of CPA.

Intracellular Crowding and the Colloidal Vitrification

Glasses are always amorphous, but not all amorphous substances are glasses [46]. Such a statement
leads us to reconsider the concept of the amorphous state, particularly in the intracellular compartment.
If the vitrifying solution is a vitreous solution, i.e., vitreous amorphous, it is not the same with regard
to the intracellular amorphous state, which cannot be qualified as vitrifying (glassy state).

According to Mochida et al. and Zhou et al., the osmotic dehydration process modifies the
intracellular architecture in a way that the formation of intracellular ice crystals is inhibited despite a
low ICCP [47,48]. In almost every cell, the cytosol is a crowded fluid in which many macromolecules,
including proteins, amino acids, polymers, nucleotides, and others, are floating. The cytoplasm further
contains cell organelles (e.g., vesicles, SER, mitochondria), and cytoskeletal structures. An increase in
the concentration of intracellular macromolecules is called “macromolecular crowding”. In freezing
studies on bacterial cytoplasm, glass-like properties have been reported to differ from those outside the
cell [49,50]. In Lactobacillus and several other organisms, it has been described that osmotic dehydration
emphasizes the intracellular macromolecular crowding. Osmotic removal of water from the cytoplasm
leads to a buildup in the concentration of intracellular solutes and an increase in the packing density
of macromolecules. Therefore, viscosity progressively increases, which leads to a solidification by
colloidal vitrification. The high viscosity and the reduced diffusion rates promote the formation of
a colloidal glass (Table 2). In contrast, solidification in a conventional aqueous glassy state can be
observed in pure water [51–53].

Following these previous studies on the intracellular behavior during dehydration, this leads
to the consideration whether the probability of obtaining an amorphous state differs intra-
and extracellularly. Extracellularly primarily CPA concentrations dictate the viscosity, whereas
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intracellularly, the cytoplasmic dehydration and macromolecular crowding itself is essentially involved
in increasing viscosity. Thus, amorphous extracellular and intracellular situations are fundamentally
different (Table 2).

Table 2. Molecular organization in vitrification and crystallization.

Vitrification Crystallization

No Molecular Organization Infinite Increase of Viscosity Molecular Organization of Water

Of a solution:
Vitreous amorphous state

Of a colloid:
Colloidal amorphous state

13 types of crystal structures
(hexagonal or cubic)

Tg = −130 ◦C Tg = <−100 ◦C Tm = −5 ◦C

= solidification in a state typical of
a liquid

= solidification is related to
dehydration of a colloid

Solution effect -> amorphous
vitrification between ice crystals

Extracellular only Intra- or extracellular Extracellular only

Revision of the Classical Equation on the Probability of Achieving a Vitrifying State

The intracellular milieu is depending on the number of CPAs that enter the cells during the
exposure in the nVS. According to the time of exposure, the colloidal solidification may result in
different architecture, and the probability of vitrification is dependent on the different factors that are
more or less predominant, following short or longer exposure (Table 2).

As a consequence, the classical equation for the probability of obtaining a vitrified state takes
into account the three factors (i) speed of cooling and warming (2000 ◦C/min to 20,000 ◦C/min),
(ii) solute viscosity, and (iii) the volume of the vitrification solution has to be updated. The equation
needs to contain a distinction between the intracellular and extracellular compartments. In the
intracellular compartment, not only the concentration of CPA influences the intracellular viscosity,
but also the degree of crowding. The equations are presented in Figure 4 and Table 2. To our knowledge,
this is the first approach to revising the classical equation and providing additional parameters that
determine the intracellular probability as a function of the degree of dehydration and the concentration
of cryoprotectants.
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Figure 4. The probability of obtaining of a vitrified (glassy or colloidal) state in the extracellular fluid
(P Vit extra cell) depends on the speed of cooling and warming (C/W), the concentration of CPA, and the
volume (Vol). Inside the cell (P Vit Intra cell), macromolecular crowding (IC crowding) has to be added
as another factor. The influence of IC crowding fluctuates, dependent on the type of cells and the extent
of dehydration.
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The Difference in the Intra- and Extracellular Glass Transition Temperature

Vitreous conditions are obtained when the T◦ decreases. In bacteria, Tg was determined by
scanning calorimetry, and authors showed that Tg differs totally in- and outside the bacterial cell [52].
They demonstrated that intracellularly colloidal vitrification is obtained at higher temperatures as
compared to the extracellular aqueous vitrification. When bacteria were exposed to DMSO (4.5% w/v),
an intracellular Tg of −51 ◦C was reported, whereas extracellular Tg was −120 ◦C.

Going back to oocytes and embryos, this means that the intracellular conditions could be obtained
inside the cell earlier than outside. The extracellular Tg in the VS technique is around −125◦C. To our
knowledge, there are no data regarding the intracellular Tg in oocytes and embryonic cells (Figure 5).
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Figure 5. Response to CPA solutions and main factors responsible for intracellular vitrification.
Short exposure to non-vitrifying solution(s) nVS and vitrifying solution (VS) result in a colloidal
solidification mainly, due to macromolecular (MM) intracellular (IC) crowding. After first dehydration
osmotic equilibrium is achieved (a), followed by an uptake of CPA with a small amount of water (b).
In the final solution (VS) strong dehydration occurs (c). With longer incubations in nVS and VS removal
of water and entrance of CPA is forced and a colloidal solidification occurs more influenced by the
intracellular concentration of CPA.

2.6.4. What Can Be Deducted from the Technique of Vitrification?

We may conclude that two different types of amorphous states coexist that depend on the
environment and may explain the difference in Tg in the extra- and intracellular compartments.
The probability of reaching a vitrified state depends on the infinite increase of viscosity, and the highest
viscosity of the extremely crowded cytogel reached a vitreous state after cell dehydration (Figure 4).
Intracellular Tg is obtained at a higher temperature than outside the cell, even in the near-absence
of CPA. The intracellular glassy state has the properties of a dense suspension of colloidal particles
(colloid glass transition) rather than that of a molecular glass, such as in the extracellular medium
(solution glass transition). The conditions of the extracellular vitrification are more drastic and need a
very rapid and deep cooling in the presence of a high concentration of CPAs to reach a Tg of −130 ◦C.
Such extracellular conditions are much more unstable and impose the physical conditions needed to
achieve successful vitrification in the whole system.
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2.7. Intracellular Vitrification: A Common Denominator for All Successful Cryopreservation Procedures

It is well recognized that the absence of intracellular crystallization is the main factor ensuring
the survival of biological material subjected to any kind of cryopreservation process. This statement,
in combination with the above-described theory regarding differences between the intra- and
extracellular vitrified states, raises the question of whether differences also exist in the cryopreserved
states of various applied cryopreservation methods (Table 3).

Table 3. Characteristics of the different types of cryopreservation techniques.

Cryopreservation
Technics Vitrification Slow

Freezing
Ultra-Rapid

Freezing
Sperm

Vitrification

Short time in
nVS

Long time in
nVS

Extracellular
crystallization No No Yes Yes Yes

Intracellular
vitrification Yes Yes Yes Yes Yes

Intracellular CPA
concentration Low High High Low Very low

Intracellular
crowding of MM

colloid
+++++ ++ ++++ ++ +++++

Extracellular Tg Low Low low ? Low

Intracellular Tg higher higher higher higher higher

Solution effect
during cooling No No Yes No No

CPA, cryoprotectant(s); MM, macromolecular; Tg, glass transition temperature; nVS, non-vitrifying solution;
?: no data available; + refers to intensity of intracellular crowding.

There are several approaches to cryopreserve gametes (oocytes or spermatozoa) and embryos;
(i) the conventional vitrification protocol using a high concentration of permeable CPA and high
cooling/warming rates; (ii) the slow freezing protocol with the application of substantially lower
concentrations of permeable CPA and low cooling rate; (iii) the directional freezing with permeable
CPA and precise control of the solution effect; (iv) the method for cryopreservation of spermatozoa
without the use of permeable CPA.

Each method has its own technical aspects in terms of the intra- and extracellular solidification
characteristics. However, the common denominator in all methods is that they are all based in
one way on the principle of increasing intracellular viscosity. This may occur, due to dehydration
during incubation in VS, in the presence of CPA, or due to dehydration during cooling because of the
extracellular ice crystal formation (Figure 4).

The term vitrification should not only refer to a specific cryopreservation technique, but also
to the vitrified state itself. The state of vitrification must be considered as present in all cells that
survive cryopreservation, independent of the cryopreservation method applied, including also the
SF technique.

In slow freezing, after equilibration with a permeable CPA (~10% v/v), the biological material
is cooled down slowly. During cooling, ice crystal formation is induced in the extracellular solution
(seeding). By each ice crystal that is formed, the osmolarity of the extracellular solution increases,
inducing the outflow of water from the intracellular compartment, due to the increased osmotic
pressure. If this procedure is performed sufficiently slow, the majority of the intracellular free water
content leaves the cell to form extracellular ice crystals. Cell volume shrinks, and the intracellular
concentration of macromolecules and CPA increases, resulting in an intracellular viscosity favorable to
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the formation of a vitreous state. The increasing viscosity associated with extracellular ice formation
leads to intracellular vitrification. It has been reported that a 10% v/v glycerol solution reaches a
concentration of approximately 67% w/w when slowly cooled down to −38 ◦C.

Similar observations are also reported in the study of Vanderzwalmen and colleagues [44].
The investigators could demonstrate that the ICCPs in vitrified zygotes are, in contrast to common
belief, even lower than those observed in zygotes after an SF procedure. SF has been the standard
cryopreservation method for more than 25 years, without being fully aware of the presence of a vitrified
intracellular state obtained with a very high ICCP. We assume that for both, SF and conventional
vitrification procedures, the common factor that creates an increase in the intracellular viscosity is
based on the dehydration phase. In SF, dehydration occurs during external ice crystal formation,
whereas in vitrification, dehydration takes place during the exposure to nVS and VS.

Intracellular vitrification is also present in the cryopreservation of sperm from different species
(human [54], equine [55], even if the term vitrification applied in this context can be confusing from a
methodological point of view.

The process of vitrification of spermatozoa is far different compared to the protocols applied
for oocytes and embryos, as for sperm, CPA is applied in very low concentrations or even absent.
This is because spermatozoa possess a very dense cytoplasm in which free water is naturally nearly
absent [56]. The low concentration of extracellular CPA does not impair the apparition of extracellular
ice crystals moving in the liquid phase to the right side of the phase diagram. What can be assumed
about the intracellular compartment? In sperm, the low amount of CPA is sufficient to remove free
water present in the cytoplasm, and after the fast cooling process, a non-crystalline solidification of the
cytoplasm takes place. Thus, cell dehydration is a common phenomenon shared by all cryopreservation
techniques which promote cell survival.

3. Conclusions

Grasping the physical-chemical” principles of cryopreservation is essential for understanding
how and why gametes and embryos survive cryopreservation. Cryopreservation is a process that has
evolved naturally, due to the adaption of many species to the extracellular environment. In response to
subzero temperatures, microorganisms, insects, fishes, and amphibians produce specific antifreeze
proteins, glycoprotein, or polysaccharides to preserve cellular integrity. Dehydration occurs naturally
when temperatures drop, and ice crystals are formed in the extracellular environment of unicellular
organisms—creating an increase osmolarity and outflow of water. The result is an increase in
intracellular viscosity, and finally, supercooling. Studying the phenomenon of natural cryopreservation,
different protocols evolved to cryopreserve human gametes and embryos. However, various types of
cells respond differently to the methods used, dependent on their intracellular viscosity, the content of
free water, and the membrane permeability for water and CPA. The specific application of permeable
or non-permeable CPA, their concentrations, and the speed of cooling or warming are imminently
success factors.

Regardless of the protocol used for cryopreservation, the common denominator for cell
survival after cryopreservation is the achievement of an intracellular colloidal vitrified state. In an
aqueous solution, a glassy vitrified state can be observed following ultra-fast cooling. In contrast,
the intracellular compartment will be vitrified, due to an immense increase in viscosity after dehydration,
macromolecular crowding, and uptake of CPA.

We reconsider the basic equation for obtaining an amorphous state. In this equation, the viscosity
simply reflects the concentration of CPA. In the intracellular compartment, in addition to CPA,
other parameters are involved. This includes intracellular macromolecular crowding, which reflects
the intracellular fluidity. Macromolecular crowding increases during exposure to the CPA solutions,
due to dehydration and influx of CPA. To our knowledge, this is the first approach that reconsiders the
classical equation that involves only three parameters to determine the probability of obtaining an
amorphous state.
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Discrimination between these two different physical states helps to understand why
cryopreservation techniques work. Furthermore, it explains, why in the vitrification protocol,
relatively low intracellular (but higher extracellular concentrations of CPA) are necessary to achieve an
optimal outcome.

Cryopreservation has become an essential application in ART, for which the success of many other
therapies would not have evolved without this technique. The in-depth exploration and knowledge
questioning the underlying chemical and physical principles presented in this review will be the basis
for understanding, optimizing, and discussing the potentially harmful effects of cryopreservation on
pregnancy and neonatal outcomes.
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